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COMMENT 

A conjecture on the Vogel-Fulcher law on hierarchical 
structures 
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Abstract. We suggest modifying recent results on dyanmical phase transitions on systems 
with hierarchically distributed barriers. I f  we slightly change the transition rates, given by 
the barriers, we obtain a Vogel-Fucher law foi, the diffusion constant. 

Ultrametric structures are of considerable interest in statistical mechanics of transport 
and  relaxation phenomena. Ultrametricity is a simple topological concept [ 13, but the 
relevance for some physical problems was recognised very recently [2] on investigation 
of the mean-field theory of spin glasses. It was discovered that the distribution of the 
ground states in  configurational space have ultrametric structure. A simple sketch of 
an  example of an  ultrametric space is given in figure 1, where the ultrametric space is 
represented by the baseline of the tree. These ultrametric structures are an excellent 
tool to model energetic disorder. Imagine a particle sitting at one of the points of the 
baseline. If the particle wants to jump to neighbouring sites it has to cross energy 
barriers which are hierarchically distributed. In  the above figure the smallest energy 
barrier is given by A. The hierarchical distribution of the barriers is a weaker constraint 
than random barriers [3], but the results are similar. It is interesting to note that there 
are now three ways of modelling disordered structures. The ultrametric space is 
connected with energetic disorder as described above. Spatial disorder can be modelled 
by fractal objects [4], while temporal disorder can be treated by the continuous time 
random walk [ 5 ] .  

All these models are discussed in connection with special features shown by 
disordered systems. For example, non-exponential relaxation in dielectric and 
mechanical response in a wide range of materials like glasses [6] or polymers [7] can 
be explained by using constrained dynamics [8]. Recent investigations on spin 
dynamics [9] and experiments on physical aging in spin glasses obtain similar results. 
In the context of chemical reactions in disordered systems fractals and ultrametic 

Figure 1. A simple sketch of an ultrametric structure with branching index 2 and barrier 
height b between each level of generation. 
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spaces have been treated [ l l ]  where it was found that the number of particles under- 
going the reaction is non-exponential in time. On the other hand, if one tries to model 
disordered systems with these kinds of considerations the discussion on the behaviour 
transport coefficients should be taken into account. Considering the particle on an 
ultrametric space like in figure 1 it is easy to imagine that at high temperatures compared 
to the barrier height the particle can jump on every site of the ultrametric space. The 
particle does not 'feel' the hierarchical barriers. At low temperatures compared to the 
barrier height the mobility of the particle should be reduced drastically. This has an 
effect on the transport properties such as the diffusion constant. We expect therefore 
strong dependence of temperature in the diffusion coefficient. It was already pointed 
out by Teitel and Domany [ 121 that there is a phase transition from normal to anomalous 
diffusion. Normal diffusion states the mean square displacement following the classical 
R2 - t dependence, while the term anomalous diffusion stands for all other laws for 
the mean square displacement of the particle. Apparently there are two possibilities 
of R 2 -  t" with a > 1 (fast anomalous diffusion occurring in turbulence [ 131) or a < 1 
as well as R2-  (log t ) "  (slow anomalous diffusion) found in all sorts of irregular 
systems (ant/termite problem) [ 141. 

In this comment we want to look at the dynamics on the ultrametric problems 
under the detailed consideration of the temperature dependence for the diffusion 
coefficient D. General aspects on the dynamics have been studied previously [15,16]. 
It was shown that the relevant quantity for relaxation patterns is the autocorrelation 
function Po( t )  being the probability of a particle to return to the origin, where it started 
at t = 0. Po( t )  is given by 

Po( t )  - t - ' o g z / p A  

where z is the branching index of the ultrametric space. From the general theory on 
self-similar lattices it was shown that Po( t )  - td \ l2  [ 17, 181 and by comparison d, = 
2(log z) /pA.  d, is the spectral dimension of the structure [17, 181 (see also [ l l ] ) .  The 
above result is only true if the barriers at each level (see figure 1 )  are the same. 

Here we choose a one-dimensional model studied by Teitel and Domany [ l l ] .  
These authors found a transition from normal to anomalous diffusion. In their model 
the transition was ruled by a critical value of the barrier height (or the transition 
probabilty which is the inverse of the barrier height). 

Consider a one-dimensional chain with z n  sites where a particle can hop. The 
transtion rates from one site to another are assumed to be symmetric, say W k , k * l =  

Wk*l,k. The dynamics of the particle is given by the master equation 

a P k / a t  = Wk,k+l(Pk+l - p k ) -  w k - l , k ( p k  - p k - l ) .  ( 1 )  

w k % k + l  = R" V l ~ m , k ( m o d 2 ' ) = 0  (2) 

The simplest model of equally distributed barriers [ 12, 161 is 

where R is the transition rate on the ultrametric scheme. The result for Po( t )  is given 
by [ I21  

where 

log z 
X =  (4) log z + P A '  
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Note that this exponent is different from the first equation in this paper coming from 
the one-dimensional character of the model here. D ( R )  is the diffusion constant 
depending on the rate. Interpretation of (3) is as follows: as long as D(R)>O one 
has normal diffusion ( R 2 ( r ) ) =  D(R)t .  If R approaches the critical value R ,  the 
diffusion turns out to be (slow) anomalous. 

D ( R )  can be calculated by using [19] 

Zwanzig [19] has shown that for a one-dimensional chain with random barriers D 
exhibits a 'long time tail', but for our considerations these corrections are not of interest. 
Applying (5) to the ultrametric problem D is found to be (in the limit of N + m )  

1 1 "  " 1  1 

and 

D - ( 1  - l / z R )  ( 6 a )  

so that R, = z - ' .  
If we assume temperature induced hopping we put 

R = e-pA (7) 

D - (1 - expMA(1- Y)I} 

D- (1 - To/ T ) .  

and we find for the diffusion constant 

(8) 
where y = (log z ) / p A .  As y approaches 1 the exponential may be expanded and we find 

(9) 

The transition temperature is given by 

To = A/ log Z. (10) 

To now depends purely on structural parameters of the ultrametric space, a result 
which is expected. 

It is quite common, however, to use the hierarchical structures as a model for 
disordered or glass-like systems. The glass transition in amorphous materials shows 
similar behaviour to the transition discussed above. At higher temperature the particles 
are mobile and the long-time behaviour of a particle in a fluid is R2( t )  - t following 
the Einstein law. Decreasing the temperature and approaching the glass transition 
temperature the particles become more and more immobile and one can expect 
anomalous diffusion at extremely long times. Clearly the glass transition itself is a 
highly non-equilibrium phenomenon and depends on the kinetics of the system [20]. 

Nevertheless we will try to find common features of the glass transition and the 
mobility transition on the ultrametric space. One universal fact of the glass transition 
seems to be the Vogel-Fulcher law which has an unusual essential singularity in 
temperature. For the diffusion constant it becomes [20] 

D-exp(  -L) T -  To 
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where A and To are fit parameters. To is not the glass temperature T g ,  but a temperature 
below: To = Tg - 50". Edwards and Vilgis have calculated the Vogel-Fulcher law directly 
for a system of dense hard rods [21, 221. There the Vogel-Fulcher law was the 
consequence of cooperative motion of some rods, while a law of the type of (9) was 
a result of a mean-field theory (see [21] for details). 

As a consequence the next step would be to find a modification of the ultrametric 
structure so that the Vogel-Fulcher law appears. To do this we define a new rate 

m 

Ro R,  R, & 
where RI is assumed to be a small perturbation of the original rate Ro. Defining 

as a formal identity where E is, according to 1/  R, , a small quantity. Equation (12) 
would mean in the context of [16] 

1 1 
A ( m ) = ( A - E ) m + - m  log 

P 
= (A-E)m+E&. 

E ' O  

m-m 

A ( m )  is then the distance between each level of generation (see figure 1 )  which reduces 
to equidistant energy barriers by E + 0. 

According to ( 6 )  we have to sum a series of the type 

S = 2 n ( a  +$) ". 
This can be done by parametrisation [21] 

S = lom dn exp[-( 1 - a ) n  + al&] 

and the diffusion constant becomes 

-!- - lom dn exp [ - ( 1 - R,+;) 1 n + 1 &I. D 

The integral contains an error function, but the main contribution is given by the 
steepest descent approximation 

By use of the definition (13 )  we find for R, 

Inserting the 

1 
-=@*(1 -e-Pe). (18) RI 

definition (13) and (18) in (17) we find the final result ( E  small) 

t T)') D = e x p  - ( 1 - 6 / T  
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where the transition temperature is now given by 

At T =  6 (19) can expressed by 

D-exp ( - ae2A’e(./6)2) 
T - e  

which is now in the form of the Vogel-Fulcher law (11). We want to stress that the 
corrections we used show similar behaviour on the Vogel-Fulcher law and hence the 
same features as given in [21]. 

The last remark would be to see if there is a significant change in the dynamical 
quantity Po( t ) .  In order to do a crude estimate of this one can take a modification of 
(9) of [16] and use (14) of this paper. Po(r) is then given by 

Po( t )  - lom dx exp[-x log z - a ( p A ) r  exp( -PA(  m )  - m log z)]. (22) 

. ( P A )  is a slow varying function of temperature. In the limit of E + 0 the result given 
in [12] is recovered. There is no simple way of expressing the integral in (22) by 
elementary methods but we expect no significant change of Po( t )  in the limit of small 
E.  A more detailed analysis will be given elsewhere. 

In summary we have presented a simple modification of a one-dimensional ultra- 
metric space which produces a Vogel-Fulcher law for the diffusion coefficient. This 
modification does not change the dynamical quantity Po( t )  significantly. The 
modifications leading to the Vogel-Fulcher law here are different kinds as in [21,22]. 
The physical picture in these references is that cooperative motion produces the 
Vogel-Fucher law, while here a modification of the ultrametric structure produced this 
behaviour for the diffusion constant. Cooperativity means that more and more particles 
are involved in the motion as the transition temperature is approached. 

Nevertheless the modification does not change the dynamical behaviour. The same 
result was found in [22], where it was stated that cooperativity does not change the 
relaxation behaviour significantly. 

It is a pleasure to thank Professor S F Edwards, Dr A Blumen, Dr G Meier and J U 
Hagenah for very helpful discussions and encouraging support. 
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